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A note on non-Boussinesq plumes in an
incompressible stratified environment
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The recent work of Rooney & Linden (1996) is generalized to describe the motion
of non-Boussinesq plumes in both uniform and stratified environments. Using an
integral model in which the horizontal entrainment velocity is assumed to take the
form uε = α(ρ/ρe)

1/2w where α is the entrainment coefficient, ρ is the plume density,
w the plume velocity and ρe the ambient density, it is shown that the vertical scale

over which non-Boussinesq effects are significant is given by zB = 5
3

(
B2
o/(20α4g3)

)1/5

where Bo is the buoyancy flux at the source. In a uniform environment, the system
admits similarity solutions such that the location of the source of a real plume
lies a distance zB |ρo/∆ρ|−5/3 beyond the point source of the similarity solution.
The above entrainment law implies a fundamental difference between the motion
of upward and downward propagating non-Boussinesq plumes, with the radius of
upward propagating plumes being greater than that of the equivalent Boussinesq
plume, while the radius of downward propagating plumes is smaller. In a stratified
but incompressible environment the model predicts that non-Boussinesq effects are
confined close to the source and that at each height, the plume velocity and the fluxes
of mass, momentum and buoyancy coincide exactly with those of the equivalent
Boussinesq plume. Furthermore, at the neutral buoyancy height, the plume radius
equals that of the equivalent Boussinesq plume.

1. Introduction
Experimental data of Ricou & Spalding (1961) and Thring & Newby (1953) suggest

that in an ascending non-Boussinesq plume, entrainment of ambient fluid is influenced
by the difference in density between the plume and the environment as well as the
plume velocity. The horizontal entrainment velocity has the form

ue = α(ρ/ρe)
1/2w (1)

where α is the entrainment coefficient, ρ is the plume density, w the plume velocity
and ρe the ambient density. Rooney & Linden (1996) recently showed that, if the
entrainment has this form, then the motion of a non-Boussinesq plume of gas rising
through a uniform incompressible environment from a point source of buoyancy is
self-similar. This self-similarity provides a powerful means of describing the non-
Boussinesq effects which arise in hot fire plumes, buoyant volcanic eruption columns
and hydrothermal plumes on the sea-floor. However, in a number of these situations,
the ambient density gradient plays an important role in confining the ascent of the
plume. It is therefore of interest to examine the interplay between non-Boussinesq
effects and ambient stratification.
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To this end, we first describe the self-similar motion of non-Boussinesq plumes,
calculating the length scale over which non-Boussinesq effects are important and
illustrating that such plumes asymptote to an equivalent Boussinesq plume over
larger scales. We then study the importance of non-Boussinesq effects on the motion
of plumes rising through a stratified environment. Finally, we apply the model
to a range of phenomena in which the source fluid may introduce large density
contrasts.

2. The model of a non-Boussinesq plume
We consider a general fluid in which the density ρ varies with a dimensionless fluid

property C according to a law of the form

1

ρ
= λ+ βC (2)

where λ, β > 0. This law may be used to describe (i) the density of a particle-laden
liquid or isothermal gas, where 1−C represents the mass fraction of particles, 1/(λ+β)
represents the density of the host fluid and 1/λ represents the density of the particles;
(ii) the density of a mixture of two linearly mixing fluids, where C is the mass fraction
of one end-member fluid, 1/(λ+ β) is the density of this fluid and 1/λ is the density
of the second end-member fluid; (iii) the density of an ideal gas of temperature CTo
where λ = 0 and β = RTo/P where R is the gas constant and To is the initial plume
temperature (this is the case considered by Rooney & Linden 1996).

We follow Morton, Taylor & Turner (1956) and adopt the top-hat model of a
plume in which the average plume velocity, w(z), density, ρ(z), and concentration,
C(z), and the effective plume radius, b(z), are defined by the horizontal averages of
velocity, w(r, z), density ρ(r, z) and concentration C(r, z) according to

Q = ρwb2 =

∫ ∞
0

2ρwrdr, M = ρw2b2 =

∫ ∞
0

2ρw2rdr, (3a,b)

ρwCb2 =

∫ ∞
0

2Cρwrdr, ρ =
1

λ+ βC
. (3c,d)

As the plume moves through an incompressible environment, in which C = Ce
and ρ = ρe say, then, using the entrainment law (1), it follows that the conservation
of mass flux, momentum flux and the flux of quantity C (for example: (i) particles,
(ii) one end-member fluid or (iii) specific enthalpy) take the form (cf. Morton et al.
1956)

dQ

dz
= 2αwb(ρρe)

1/2, (4)

dM

dz
= g(ρe − ρ)b2 = gβ(C − Ce)b2ρeρ, (5)

dCQ

dz
= 2αwb(ρρe)

1/2Ce, (6)

where for case (iii) the specific heat at constant pressure is assumed constant.
For an upward propagating plume, we define the local buoyancy flux

B = g
ρe − ρ
ρe

ub2 = gβ(C − Ce)Q. (7)



Non-Boussinesq plumes in an incompressible stratified environment 349

Combining equations (4), (6) and (7), it follows that

dB

dz
= −gβ dCe

dz
Q, (8)

where we assume that β is constant (equation (2)). Equations (4) and (5) may also be
re-expressed in the more compact form

dQ

dz
= 2αM1/2ρ1/2

e , (9)

dM

dz
=
BQρe

M
. (10)

Equations (8)–(10) model the motion of a non-Boussinesq plume, and are analogous
to the model proposed by Rooney & Linden (1996). In the model, the plume fluid
may undergo large changes in density, and therefore it has application in many
environmental situations, for example plumes produced by gas leaks or small fires.

3. Similarity solutions in uniform environments
3.1. Upward propagating non-Boussinesq plumes in an unstratified environment

In the limit of no ambient stratification, dCe/dz = 0 and the buoyancy flux B is
a constant. Now equations (9), (10) admit similarity solutions (Morton et al. 1956;
Rooney and Linden 1996)

Q =
6α

5

(
9α

10

)1/3

ρeB
1/3z5/3, (11)

M =

(
9α

10

)2/3

ρeB
2/3z4/3. (12)

Combining these solutions with the density relation (3d) we obtain explicit expressions
for b, w, ρ and C:

b =
6α

5
z

(
1 +

(zB
z

)5/3
)1/2

, ρ =
ρe

1 +
(
zB/z

)5/3
(13a,b)

w =

(
9α

10

)1/3(
5

6α

)
B1/3z−1/3, C = Ce +

1

ρeβ

(zB
z

)5/3

, (13c,d)

where the length scale

zB =
5

3

(
B2

20α4g3

)1/5

. (14)

By analogy with Boussinesq plumes, the entrainment coefficient α ∼ 0.1.
The length scale zB represents the length scale over which non-Boussineq effects are

important. Over this length scale, the plume adjusts to Boussinesq behaviour through
entrainment, and so for plumes of larger buoyancy flux, a greater mass of ambient fluid
needs to be entrained for the density to converge to that of the environment, tending
to increase zB . The length scale, zB , also depends on the gravitational acceleration
g since this controls the initial plume acceleration, and hence the plume speed and
rate of entrainment. For z � zB , the solution (13) asymptotes to the equivalent
Boussinesq plume of the same buoyancy flux B, which issues from a point source
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Figure 1. Variation of the radius (plotted as 5b/6α, cf. 13a), with position for both an ascending
and descending non-Boussinesq plume: (a) the far-field structure which converges to the Boussinesq
plume solution and (b) the structure near the source. Here zB = 1. The descending plume solution
only applies in the region z > zB = 1.

located at z = 0 (figure 1; cf. Morton et al. 1956). The limit zB = 0 corresponds to
the classical solutions of Morton et al. (1956), which coincide with the equivalent
Boussinesq plume.

The solution (equation (13); figure 1a) identifies that just above the source, where
z � zB , the plume expands very rapidly in comparison to the equivalent Boussinesq
plume whose radius increases steadily with height at a rate 6α/5. Essentially, near
the source, the density of the plume is very small relative to the environment (figure
2), and so since the mass flux of the plume is the same as the equivalent Boussinesq
plume ((12); cf. Morton et al. 1956), the volume flux is greater. In turn, this causes
the radius to increase more rapidly with height that in the equivalent Boussinesq
plume, db/dz > 6α/5. However, higher in the plume, as entrainment causes the plume
density to increase towards that in the environment (figure 2), the radius of the plume
begins to evolve back towards that of the equivalent Boussinesq plume, since the
total mass flux of the plume must coincide with that of the equivalent Boussinesq
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Figure 2. Variation of the dimensionless density of the plume, ρ/ρe, with position for both a
descending and an ascending non-Boussinesq plume. zB = 1.

plume (equation (12)). Indeed, above the point z = zB/(24)3/5, the radius increases
less rapidly with height than in the equivalent Boussinesq plume, db/dz < 6α/5.

The formal limit of the similarity solution (13) as z → 0 gives

b ∼ 6α

5
z

5/6
B z1/6 → 0, ρ ∼ ρe

(
z

zB

)5/3

→ 0, C − Ce =
1

βρe

(zB
z

)5/3

→∞. (15)

However, in a real experiment, C is bounded at the physical source, C = Co =
1/β

(
1/ρo − λ

)
(equation (3d)) where ρo is the density at the source. Therefore,

according to the similarity solutions, the real experimental source is located at z = zs,
a distance zs above the (conceptual) point source where

zs = zB

(
ρo

ρe − ρo

)3/5

; (16)

zs/zB is shown as a function of ρo/ρe in figure 3. Even though the mathematical
solutions start at z = 0, the solutions are only physically relevant in the region z > zs
which corresponds to the actual plume – the mathematical solution in the region
0 < z < zs simply determines the source conditions at z = zs such that the motion is
self-similar in the region z > zs. The modified entrainment law (1) therefore need only
apply in the region z > zs, where it is supported by experimental data (e.g. Thring &
Newby 1953).

3.2. Downward propagating non-Boussinesq plumes

The entrainment law (1) implies that for upward propagating plumes, the entrainment
is suppressed owing to the relatively small density of the plume fluid, whereas for
downward propagating, relatively dense plumes, (1) suggests that the entrainment is
enhanced. We therefore expect rather different behaviour for a downward propagating
relatively dense plume. In this case, it is convenient to redefine the local buoyancy
flux (cf. (7)) to be B = gβ(Ce − C)Q > 0. If z is now measured downwards, then
equations (8)–(10) again govern the motion, which may be described by further
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Figure 3. Location of the real source, zs/zB , as a function of the density ratio ρo/ρe at the source.
Curves are shown for both upward and downward propagating sources. In real situations, ρo/ρe
may take values in the range 0.5 (fire) to 1.2–1.3 (dense gas plume).

similarity solutions in which the radius, density and concentration are given by

b =
6αz

5

(
1−

(zB
z

)5/3
)1/2

, ρ =
ρe

1−
(
zB/z

)5/3
, Ce − C = (ρeβ)−1

(zB
z

)5/3

. (17)

As may be seen in figures 1 and 2, the model solution for the downward propagating
plume is quite distinct from that for an upward propagating non-Boussinesq plume.
The presence of the negative sign in equations (17) represents the fact that the density
in the downward propagating plume exceeds that in the environment (figure 2). The
solutions are only physically meaningful for z > zB since at the point z = zB , the
radius of the plume b = 0 and the plume density ρ → ∞ (figures 1 and 2). Note
that at z = zB , the mass and momentum fluxes are finite. Indeed, if the concentration
of a real experimental plume at the source Co = (1/β)(1/ρo − λ) then the plume is
described by the similarity solution (17) in the region z > zs where

zs = zB

(
ρo

ρo − ρe

)3/5

> zB. (18)

Figure 3 also shows the values zs/zB as a function of ρo/ρe in a descending plume.
Note again that in order for these similarity solutions to model a real plume issuing
from a source located at z = zs, the modified entrainment law (equation (1)) need
only apply in the region z > zs. The mathematical solution in the region z < zs simply
prescribes the source conditions at z = zs in order that the flow is self-similar for
z > zs.

For z � zB the non-Boussinesq effects become negligible and the plume asymptotes
to a Boussinesq plume of buoyancy flux Bo, whose virtual point source is located
at z = 0 (figure 1a). In fact, in a non-Boussinesq descending plume, db/dz > 6α/5
if z > zB , and the plume radius converges monotonically to that of the equivalent
Boussinesq plume. Note that the radii of upward and downward propagating non-
Boussinesq plumes evolve in a qualitatively similar fashion to plumes issuing from
distributed and constricted sources (cf. Caulfield & Woods 1995).
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4. Effects of uniform stratification
We restrict attention to motion over vertical scales z smaller than the scale height

of the environment,

z � zc =
ρe

dρe/dz
= − 1

ρeβdCe/dz
(19)

so that over the scale of the plume, the ambient fluid remains incompressible and of
nearly constant density. Thus ρe may be taken as a constant in equations (9) and
(10), and equation (8) may be rewritten in terms of the Brunt–Väisälä frequency

N2 = gρeβ
dCe
dz

(20)

as

dB

dz
= −N

2Q

ρe
. (21)

It is convenient to work with dimensionless mass, momentum and buoyancy fluxes
defined by

Q̂ = B−3/4
o N5/4ρ−1

e Q, M̂ = B−1
o Nρ−1

e M, B̂ = B−1
o B (22a–c)

and the dimensionless height

y = B−1/4
o N3/4z (23)

where Bo is the buoyancy flux evaluated at the source. Equations (8)–(10) then
become

dQ̂

dy
= 2αM̂1/2,

dM̂

dy
=
B̂Q̂

M̂
,

dB̂

dy
= −Q̂. (24a–c)

These equations are equivalent to those employed by Morton et al. (1956) to describe
the volume flux, momentum flux (per unit mass) and buoyancy flux for a Boussinesq
plume. Therefore, at each height Q̂, M̂ and B̂ may be identified with the analogous
dimensionless properties in a Boussinesq plume issuing from y = 0 with buoyancy
flux Bo. Thus the height of rise (at which M̂ = 0) and the speed at each height, M/Q,
are identical to those in the equivalent Boussinesq plume.

However, by combining (8), (10) and (22) it can be shown that in the non-Boussinesq
plume

ρ =
ρe

1±A
(
B̂/Q̂

) , b = bB

(
1±A B̂

Q̂

)1/2

(25a,b)

with the ± corresponding to ascending and descending plumes, and where bB corre-
sponds to the radius of the equivalent Boussinesq plume (cf. Morton et al. 1956). The
parameter

A =
B

1/4
o N5/4

g
=
za

zs
(26)

represents the ratio of the height of rise of the plume in a stratified environment,

za ∼ B
1/4
o N−3/4 (cf. Morton et al. 1956), to the scale height of the environment,

zs = g/N2. The assumption of incompressibility requires za � zs and so A � 1.
From (25), we deduce that non-Boussinesq effects are only important in a region
just above the source and that the nature of the non-Boussinesq effects is similar
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Figure 4. Variation of the (a) radius and (b) density with height in an ascending and a descending
non-Boussinesq plume in a stratified incompressible environment. The heights and radii have been
normalized with respect to the dimensionless height of the Boussinesq plume, for which A = 1 and
y = 9.5. In both cases curves are shown for A = 0.01 and 0.1 with the descending plumes denoted
by a minus sign. The ascending plume has a larger radius than the equivalent Boussinesq plume
owing to the rapid non-Boussinesq expansion just above the source (cf. figure 1).

to that in a uniform environment (figure 1). Indeed, figure 4 illustrates that for an
ascending plume there is an initial rapid expansion to radii in excess of the equivalent
Boussinesq plume (curvesA = 0.01, 0.1), but that the motion then converges towards
that of a Boussinesq plume. Essentially, the mass flux increases at the same rate
as in the equivalent Boussinesq plume (24a), and so since near the source the non-
Boussinesq plume has very small density, it has a much greater volume flux than the
equivalent Boussinesq plume. In turn, this leads to a more rapid increase in radius
with height (cf. figure 1b, §3). However, as the plume density increases towards that
in the environment, the plume radius converges back towards that of the Boussinesq
plume in order that the mass flux remains the same as in the equivalent Boussinesq
plume; ultimately, at the neutral buoyancy height, B = 0, the radius coincides exactly
with that of the equivalent Boussinesq plume (figure 4). Note that in the region above
the neutral buoyancy height, the negative buoyancy decelerates the plume to rest.

In a descending non-Boussinesq plume, the model solutions only become physically
relevant above some height yB(A) > 0 (cf. figure 1) at which the plume radius, b = 0
(figure 4, curves −0.01, −0.1). Since A � 1, the non-Boussinesq effects occur close
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the source and are largely independent of the ambient stratification. Therefore

yB ∼
5

3

(
1

20α4

)1/5

A3/5 as A→ 0. (27)

Note that at the point y = yB the plume has finite mass, momentum and buoyancy
flux even though b = 0. As the plume descends, it is initially denser than the
environment, and so its radius is smaller than the equivalent Boussinesq plume since
both plumes have the same mass flux. As the plume density converges towards that
of the environment, the radius of the plume therefore increases towards that of the
equivalent Boussinesq plume. Again, at the neutral buoyancy height, the plume radius
exactly matches that of the equivalent Boussinesq plume.

5. Importance of non-Boussinesq effects
The adjustment of the radius to within about 10% of a Boussinesq plume occurs

over the distance ((13a), (14)) 4zB ∼ 4B
2/5
o g−3/5 above the conceptual point source

z = 0. Therefore if the real source is located at zs, then the non-Boussinesq effects

will only be significant in the region zs = zB
(
ρo/(ρo − ρe)

)3/5
< z < 4zB .

For a typical laboratory experiment using aqueous solutions, ρo − ρe 6 0.1ρe, and
so zs/zB > 4–5. Therefore, even close to the source, non-Boussinesq effects are small.
Further, since Bo/ρe 6 10−4–10−8 m5 s−3, zB 6 1–2 cm. Hence even if larger initial
density contrasts were possible, as in a bubble or particle-laden plume, the motion
will adjust to Boussinesq behaviour within 5–10 cm of the source.

A small household or building fire may produce a heat flux QT of order 104 W
and the fire temperature may exceed that of the surroundings by ∆T ∼ 200–300 K,
so that ρo/ρe ∼ 0.5 and zs ∼ zB . The smoke plume associated with this is therefore
likely to have a region of very non-Boussinesq behaviour near the source. Indeed,
for such a fire we may write Bo = gQT/ρocpTo which has value Bo ∼ 1.0 m4 s−3 so
that zB ∼ 0.3 m. Thus the plume behaves in a non-Boussinesq fashion in a region
at most of order 1 m above the source. This may be a significant fraction of the
depth of a room/building hosting the fire. However, we note that since the mass flux
entrained into the plume, dQ/dz, varies exactly as that of the equivalent Boussinesq
plume (equation (2)), the rate at which such a non-Boussinesq plume can restratify
the environment through the filling box process (i.e. the speed of the first front; cf.
Baines & Turner 1969) is identical to that of the equivalent Boussinesq plume. This
is a consequence of the increased radius of the non-Boussinesq (ascending) plume
which exactly compensates for the decreased turbulent entrainment rate.

Although in some geophysical situations, the density law may be more complex
than (2), it is interesting to estimate the value of the effective source position zs and
the adjustment length zB which may also be deduced from dimensional arguments.
For example, in a hydrothermal plume, Bo may take values of order 0.1–1.0 m4 s−3

and the hot hydrothermal fluid may issue into the ocean with a density ρo > 0.5ρe.
Therefore, zs ∼ zB and zB ∼ 0.1–1 m, so that the motion will converge to that of
a Boussinesq plume over the first 1–5 m, which is a relatively small fraction of the
total ascent height of 200–300 m (Turner & Campbell 1987). In a volcanic eruption
column, just above the volcano, the plume density may decrease to values of order
ρo ∼ 0.2ρe so that zs ∼ 0.5zB . The buoyancy flux associated with such plumes may
then be as large as Bo ∼ 106–109 m4 s−3 and so zB ∼ 100–1000 m, suggesting that
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an eruption column remains non-Boussinesq over heights of order 1–5 km, consistent
with the results of numerical models (Woods 1988).

6. Summary
Non-Boussinesq effects may have a great impact on the shape and density evolution

of a plume over a distance zB above the source. We estimate that this adjustment
distance may be as large as 1 m in smoke plumes produced by small fires in buildings,
and it may extend several kilometres in large volcanic eruption columns. However,
the self-similar fluxes of mass, momentum and density deficit in a non-Boussinesq
plume are identical to those of the equivalent Boussinesq plume. In a stratified
incompressible environment, non-Boussinesq effects are confined to a region close
to the source, and they do not influence the final ascent height of the plume. The
solutions presented in this note are based on the entrainment law (1); it would be
of interest to explore this parameterization with further experiments, examining the
influence of initial momentum and mass flux on the entrainment process. In the
different limit in which the plume height is greater than the scale height of the
environment, za > zs, A > 1, non-Boussinesq effects may be important throughout
the height of the plume. However, owing to the importance of compressibility, the
underlying model becomes more complex since ρe varies over the height of the plume.

Colm Caulfield, Paul Linden, Gabriel Rooney and two anonymous referees gave
some useful comments on earlier versions of this note. The author is supported by
the NERC.
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